If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+84t+216
We move all terms to the left:
0-(-16t^2+84t+216)=0
We add all the numbers together, and all the variables
-(-16t^2+84t+216)=0
We get rid of parentheses
16t^2-84t-216=0
a = 16; b = -84; c = -216;
Δ = b2-4ac
Δ = -842-4·16·(-216)
Δ = 20880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20880}=\sqrt{144*145}=\sqrt{144}*\sqrt{145}=12\sqrt{145}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-12\sqrt{145}}{2*16}=\frac{84-12\sqrt{145}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+12\sqrt{145}}{2*16}=\frac{84+12\sqrt{145}}{32} $
| 6(x-5)=5x-8 | | 0=-16t^2+104t+560 | | 6x/8+11=14 | | 120=18x+18 | | 6/7x-9=35 | | X+4x+(4x-27)=180 | | G(x)=-10x^2+3x+27 | | 3+7y=31 | | -2=1/y+7 | | (5a)=(2a+3)=90 | | 9+44x=-15 | | 3x^2-4=196 | | 3x+4-x=16-2x | | (7-z)(2z+1)=0 | | 2r2=50 | | 90=(4x-10)+(2x-20) | | 3x-12=9x+6 | | -7=4w+1 | | -4=3u+2 | | y=35000(1.024)4 | | 5x-(x/3)=2 | | 15−42÷b=8 | | 0.5y-0.2y=60 | | 41+p=0 | | -6=4+u/2 | | 41=5y+6 | | (3x+2)(2x-7)=180 | | 3n-12n=30 | | 24+6m+10=9+10m | | (180-x*x)+(150-2x)=180 | | 12+3y=-6+y | | 2-2(4x-2)=-6 |